MATH 5061 Solution to Problem Set 2^{1}

1. Prove that the antipodal map $A(p)=-p$ induces an isometry on \mathbb{S}^{n}. Use this to introduce a Riemannian metric on $\mathbb{R} \mathbb{P}^{n}$ such that the projection map $\pi: \mathbb{S}^{n} \rightarrow \mathbb{R} \mathbb{P}^{n}$ is a local isometry.

Solution:

Firstly, note that antipodal map $A(p)=-p$ will give an isometry on \mathbb{R}^{n+1}. That is, let g be the metric on \mathbb{R}^{n+1}, then

$$
\begin{aligned}
\left(A^{*} g\right)_{p}\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right) & =g_{-p}\left(d A_{p}\left(\frac{\partial}{\partial x_{i}}\right), d A_{p}\left(\frac{\partial}{\partial x_{j}}\right)\right) \\
& =g_{-p}\left(-\frac{\partial}{\partial x_{i}},-\frac{\partial}{\partial x_{j}}\right)=\delta_{i j} \\
& =g_{-p}\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right)
\end{aligned}
$$

So $A^{*} g=g$. Hence $A^{*}\left(\left.g\right|_{\mathbb{S}^{n}}\right)=\left.g\right|_{\mathbb{S}^{n}}, A$ will induce an isometry on \mathbb{S}^{n}.
Now we have the nature definition of metric \tilde{g} on $\mathbb{R} \mathbb{P}^{n}$ defined by

$$
\tilde{g}_{q}(v, w)=\left.g_{p}\right|_{\mathbb{S}^{n}}\left(v_{0}, w_{0}\right)
$$

where $q \in \mathbb{R P}^{n}, p \in \pi^{-1}(q), v_{0} \in d \pi_{p}^{-1}(v), w_{0} \in d \pi_{p}^{-1}(w)$. Note that v_{0}, w_{0} is uniquely determined by v, w since $d \pi_{p}$ is a isomorphism. We need to verity \tilde{g} is well-defined.

If p^{\prime} is another p such that $\pi\left(p^{\prime}\right)=q$, then $p^{\prime}=-p=A(p)$. Hence $\left.g_{p}\right|_{\mathbb{S}^{n}}\left(v_{0}, w_{0}\right)=\left.g_{A(p)}\right|_{\mathbb{S}^{n}}\left(d A_{p}\left(v_{0}\right), d A_{p}\left(w_{0}\right)\right)$. Note that $d \pi_{A(p)} \circ d A_{p}=\pi_{p}$ by $\pi \circ A=\pi$, so p^{\prime} will give the same definition with p.

By the construction above, we can find π is indeed a local isometry since locally they are diffeomorphism and their metric is related by π.
2. Show that the isometry group of \mathbb{S}^{n}, with the induced metric from \mathbb{R}^{n+1}, is the orthogonal group $O(n+1)$.

Solution:

Let $\mathcal{F}:=\left\{F: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n} \mid F\right.$ is an isometry $\}$. Then we know $O(n+1) \subset \mathcal{F}$ since the orthogonal transformation will keep the metric of \mathbb{R}^{n+1} and hence keep the metric on \mathbb{S}^{n}.

We will show that $O(n+1)=\mathcal{F}$.
Let $\varphi \in \mathcal{F}$ be an isometry of \mathbb{S}^{n}. Then we construct a new map ψ : $\mathbb{R}^{n+1} \backslash\{0\} \rightarrow \mathbb{R}^{n+1} \backslash\{0\}$ in the following ways

$$
\psi(x)=|x| \varphi\left(\frac{x}{|x|}\right), x \in \mathbb{R}^{n+1} \backslash\{0\}
$$

One can verify this is a diffeomorphism. Moreover, we can calculate the differential map at x with direction v as following, (e.g. calculating $\left.\frac{\mathrm{d}}{\mathrm{d} t}\right|_{t=0} \psi(c(t))$

[^0]with $\left.c(0)=x, c^{\prime}(0)=v\right)$
\[

$$
\begin{aligned}
d \psi_{x}(v) & =\left.\varphi\left(\frac{x}{|x|}\right) \frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0}|x+t v|+\left.|x| \frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \varphi\left(\frac{x+t v}{|x+t v|}\right) \\
& =\frac{\langle x, v\rangle}{|x|^{2}} \varphi\left(\frac{x}{|x|}\right)+|x| d \varphi_{\frac{x}{|x|}}\left(\frac{v}{|x|}-\frac{\langle x, v\rangle x}{|x|^{3}}\right)
\end{aligned}
$$
\]

where $\langle\cdot, \cdot\rangle$ is the inner product on \mathbb{R}^{n+1} (Or the standard metric on Euclidean space)

Use the fact φ is an isometry, i.e. $\left\langle d \phi_{p}(v), d \phi_{p}(w)\right\rangle=\langle v, w\rangle$, and then fact $\varphi\left(\frac{x}{|x|}\right) \perp \operatorname{Im}\left(d \phi_{\frac{x}{|x|}}^{|x|}\right),\left|\varphi\left(\frac{x}{|x|}\right)\right|=1$, we find

$$
\begin{aligned}
\left\langle d \psi_{x}(v), d \psi_{x}(w)\right\rangle & =\frac{\langle x, v\rangle\langle x, w\rangle}{|x|^{4}}+|x|^{2}\left\langle\frac{v}{|x|}-\frac{\langle x, v\rangle x}{|x|^{3}}, \frac{w}{|x|}-\frac{\langle x, w\rangle x}{|x|^{3}}\right\rangle \\
& =\langle v, w\rangle
\end{aligned}
$$

So we get $\psi: \mathbb{R}^{n+1} \backslash\{0\} \rightarrow \mathbb{R}^{n+1} \backslash\{0\}$ is an isometry. Now we can use the properties of Euclidean space to show ψ is indeed a linear map.

Since ψ is an isometry, it keeps the distance of different points. That is, if $p, q \in \mathbb{R}^{n+1} \backslash\{0\}$, such that the line segment $p q$ doesn't contain 0 , then $|\psi(p)-\psi(q)|=|p-q|$. If the line segment $p q$ contains 0 , since ψ is continuous, we still have the same result since we can choose $q_{i} \rightarrow q$ such that $p q_{i}$ does not contain 0 and take limit in $\left|\psi(p)-\psi\left(q_{i}\right)\right|=\left|p-q_{i}\right|$.

Again, by the definition of ψ, we know ψ keeps the length of points. That is

$$
|\psi(p)|=|p|\left|\varphi\left(\frac{p}{|p|}\right)\right|=|p|
$$

Hence ψ keeps the inner product by the following

$$
\begin{aligned}
\langle\psi(p), \psi(q)\rangle=\frac{1}{2}\left(|\psi(p)|^{2}+|\psi(q)|^{2}-|\psi(p)-\psi(q)|^{2}\right) & =\frac{1}{2}\left(|p|^{2}+|q|^{2}-|p-q|^{2}\right) \\
& =\langle p, q\rangle
\end{aligned}
$$

for any $p, q \in \mathbb{R}^{n+1} \backslash\{0\}$.
So for any $a, b \in \mathbb{R}, p, q, r \in \mathbb{R}^{n+1} \backslash\{0\}$, we have

$$
\langle\psi(a p+b q)-a \psi(p)-b \psi(q), \psi(r)\rangle=\langle a p+b q, r\rangle-a\langle p, r\rangle-b\langle q, r\rangle=0
$$

Note that $\psi(r)$ can take any vectors in \mathbb{S}^{n}, by choose $\psi(r)=e_{1}, \cdots, e_{n+1}$ to be the basis of \mathbb{R}^{n+1}, we actually know

$$
\psi(a p+b q)=a \psi(p)+b \psi(q)
$$

Hence if we define $\psi(0)=0$, we actually get $\psi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}$ is a linear map. It is an orthogonal map since ψ also keeps the length of any line segments of \mathbb{R}^{n+1}.

So as a restriction of ψ, the map φ is an orthogonal transformation on \mathbb{S}^{n}.
3. For any smooth curve $c: I \rightarrow M$ and $t_{0}, t \in I$, we denote the parallel transport map as $P=P_{c, t_{0}, t}$: $T_{c\left(t_{0}\right)} M \rightarrow T_{c(t)} M$ along c from $c\left(t_{0}\right)$ to $c(t)$.
(a) Show that P is a linear isometry. Moreover, if M is oriented, then P is also orientation-preserving.
(b) Let X, Y be vector fields on $M, p \in M$. Suppose $c: I \rightarrow M$ is an integral curve of X with $c\left(t_{0}\right)=p$. Prove that

$$
\left(\nabla_{X} Y\right)(p)=\left.\frac{d}{d t}\right|_{t=t_{0}} P_{c, t_{0}, t}^{-1}(Y(c(t))) .
$$

Solution:
(a). Let write a new curve $\tilde{c}(s)=c\left(t+t_{0}-s\right)$ from $c(t)$ to $c\left(t_{0}\right)$ for $s \in\left[t_{0}, t\right]$. So we can define the new map $\tilde{P}=P_{\tilde{c}, t, t_{0}}: T_{c(t)} M \rightarrow T_{c\left(t_{0}\right)} M$.

Note P, \tilde{P} are all homomorphism since for constant a, b, we always have $\nabla_{X}(a Y+b Z)=a \nabla_{X} Y+b \nabla_{X} Z$.

Let's show $\tilde{P} \circ P=\operatorname{Id}_{\left.T_{c(t}\right)} M$. This is because, for any $V(c(t))$, the parallel transportation of $V \in T_{c\left(t_{0}\right)} M$ along c, we consider the vector fields $V(c(s))=$ $V\left(\tilde{c}\left(t+t_{0}-s\right)\right)$, we have

$$
\nabla_{\tilde{c}^{\prime}(s)} V=\nabla_{-c^{\prime}(s)} V=0
$$

Hence $V\left(\tilde{c}\left(t+t_{0}-s\right)\right)$ is a parallel transport from $V(c(t))$ along \tilde{c}. Hence $\tilde{P}(V(c(t)))=V\left(c\left(t_{0}\right)\right)$. That's $\tilde{P} \circ P\left(V\left(c\left(t_{0}\right)\right)\right)=V\left(c\left(t_{0}\right)\right)$.

Similarly, we know $P \circ \tilde{P}=\operatorname{Id}_{T_{c(t)}} M$. Hence P is an isomorphism.
For the linear isometry, Let V, W be two vectors fields that are all paralleled along c. Since the metric is compatible with connection, we have

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} g(V(s), W(s)) & =g\left(\nabla_{c^{\prime}(s)} V(s), W(s)\right)+g\left(V(s), \nabla_{c^{\prime}(s)} W(0)\right) \\
& =g(0, W(s))+g(V(s), 0))=0
\end{aligned}
$$

Integrate s from t_{0} to t, we have $g(V(t), W(t))=g\left(V\left(t_{0}\right), W\left(t_{0}\right)\right)$.
If M is orientable, we consider the $P_{s}=P_{c, t_{0}, s}$ for any $s \in\left[t_{0}, t\right]$. Let's choose an orientable basis $e_{1}, \cdots e_{n} \in T_{c\left(t_{0}\right)} M$ and let $e_{i}(s)=P_{s}\left(e_{i}\right)$, the parallel transport of e_{i} along c.

Let's consider the function $f(s):\left[t_{0}, t\right] \rightarrow\{-1,1\}$ where $f(s)=1$ if and only if P_{s} is orientation-preserving.

Clearly $f(s)$ is continuous since in any oriented local coordinate chart x_{1}, \cdots, x_{n}, we write $e_{i}=\sum_{j=1}^{n} a_{i j} \frac{\partial}{\partial x_{j}}$, then orientation of $e_{i}(s)$ is determined by the sign of $\operatorname{det}\left(a_{i j}(s)\right)$, which is continuous with respect to s.

Since $f\left(t_{0}\right)=1$, we get $f(s)=1$ for all $s \in\left[t_{0}, t\right]$. So P is orientation preserving.
(b).

As before, we choose e_{1}, \cdots, e_{n} as the basis of $T_{c\left(t_{0}\right)} M$, and let $e_{i}(c(t))$ be the parallel transformation along $c(t)$ from the vectors e_{i}. Since $e_{i}(c(t))$ is the basis of $T_{c(t)} M$ by the isomorphism of P, we can write $Y(c(t))=a_{i}(t) e_{i}(c(t))$. Hence

$$
\begin{aligned}
\nabla_{X} Y(p) & =\left.\sum_{i=1}^{n} \nabla_{c^{\prime}(0)}\left(a_{i}(t) e_{i}(c(t))\right)\right|_{t=t_{0}}=\sum_{i=1}^{n} c^{\prime}(0)\left(a_{i}(t)\right) e_{i}(p)+a_{i}(0) \nabla_{c^{\prime}(0)} e_{i}(p) \\
& =\sum_{i=0}^{n} a_{i}^{\prime}(0) e_{i}(p)
\end{aligned}
$$

Here $c^{\prime}(0)\left(a_{i}(t)\right)$ means the vector $c^{\prime}(0)$ acting on the function $a_{i}(t)$.

On the other hand, use the fact that $P_{c, t_{0}, t}^{-1}$ is a linear map, we have

$$
\begin{aligned}
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=t_{0}} P_{c, t_{0}, t}^{-1}(Y(c(t))) & =\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=t_{0}} \sum_{i=1}^{n} a_{i}(t) P_{c, t_{0}, t}^{-1}\left(e_{i}(c(t))\right) \\
& =\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=t_{0}} \sum_{i=1}^{n} a_{i}(t) e_{i}\left(c\left(t_{0}\right)\right) \\
& =\sum_{i=0}^{n} a_{i}^{\prime}(0) e_{i}(p)
\end{aligned}
$$

Hence $\left(\nabla_{X} Y\right)(p)=\left.\frac{\mathrm{d}}{\mathrm{d} t}\right|_{t=t_{0}} P_{c, t_{0}, t}^{-1}(Y(c(t)))$.
4. Prove the second Bianchi identity: for any vector fields $X, Y, Z, W, T \in \Gamma(T M)$,

$$
\left(\nabla_{X} R\right)(Y, Z, W, T)+\left(\nabla_{Y} R\right)(Z, X, W, T)+\left(\nabla_{Z} R\right)(X, Y, W, T)=0
$$

Solution:

We use the normal coordinate to compute the second Bianchi Identity. Choose $p \in M$ with the normal coordinate e_{1}, \cdots, e_{n} at p. So we have $\nabla_{e_{i}} e_{j}=0$ at p for any $1 \leq i, j \leq n$ and hence $\left[e_{i}, e_{j}\right]=0$ at p.

So at p, the coderivative of Riemann curvature tensor can be written as

$$
\begin{aligned}
\left(\nabla_{e_{i}} R\right)\left(e_{j}, e_{k}, e_{l}, e_{m}\right) & =\frac{\partial}{\partial x_{i}} R\left(e_{j}, e_{k}, e_{l}, e_{m}\right) \\
& =-\left\langle\nabla_{e_{i}} \nabla_{e_{j}} \nabla_{e_{k}} e_{l}, e_{m}\right\rangle+\left\langle\nabla_{e_{i}} \nabla_{e_{k}} \nabla_{e_{j}} e_{\lambda} e_{m}\right\rangle
\end{aligned}
$$

So

$$
\begin{aligned}
& \left(\nabla_{e_{i}} R\right)\left(e_{j}, e_{k}, e_{l}, e_{m}\right)+\left(\nabla_{e_{j}} R\right)\left(e_{k}, e_{i}, e_{l}, e_{m}\right)+\left(\nabla_{e_{k}} R\right)\left(e_{i}, e_{j}, e_{l}, e_{m}\right) \\
= & -\overline{\left\langle\nabla_{e_{i}} \nabla_{e_{j}} \nabla_{e_{k}} e_{l}, e_{m}\right\rangle}+\underline{\left\langle\nabla_{e_{i}} \nabla_{e_{k}} \nabla_{e_{j}} e_{l}, e_{m}\right\rangle} \\
& -\underline{\overline{\left\langle\nabla_{e_{j}} \nabla_{e_{k}} \nabla_{e_{i}} e_{l}, e_{m}\right\rangle}}+\overline{\left\langle\nabla_{e_{j}} \nabla_{e_{i}} \nabla_{e_{k}} e_{l}, e_{m}\right\rangle} \\
& -\underline{\left\langle\nabla_{e_{k}} \nabla_{e_{i}} \nabla_{e_{j}} e_{l}, e_{m}\right\rangle} \\
= & R\left(\overline{\left\langle\nabla_{e_{k}} \nabla_{e_{j}} \nabla_{e_{i}} e_{l}, e_{m}\right\rangle}\right. \\
= & 0 \quad\left(\nabla_{e_{i}} e_{j}=0 \text { for } 1 \leq i, j \leq n \text { and } R \text { is a tensor. }\right)
\end{aligned}
$$

Since the coderivative of R is still a tensor, then by the linearity of R, we have

$$
\left(\nabla_{X} R\right)(Y, Z, W, T)+\left(\nabla_{Y} R\right)(Z, X, W, T)+\left(\nabla_{Z} R\right)(X, Y, W, T)=0
$$

[^0]: ${ }^{1}$ Last revised on March 5, 2024

